ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 70]      



Задача 109028

Темы:   [ Числовые таблицы и их свойства ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.

Прислать комментарий     Решение

Задача 109715

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Геометрическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Найдите сумму



Прислать комментарий     Решение

Задача 109945

Темы:   [ Теория игр (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 8,9,10

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?
Прислать комментарий     Решение


Задача 111914

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?

Прислать комментарий     Решение

Задача 111918

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Дана такая возрастающая бесконечная последовательность натуральных чисел a1, ..., an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .