ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Квадратный трехчлен" (Болибрух А., Уроев В.,Шабунин М.) Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции? ![]() ![]() В городе живут рыцари и лжецы. Рыцари всегда говорят правду, а лжецы всегда лгут. Рыцари носят с собой шпагу, а лжецы– нет. Собрались вместе два рыцаря и два лжеца и посмотрели друг на друга. Кто из них мог сказать фразу: 1) "Cреди нас все рыцари". 2) "Среди вас есть ровно один рыцарь". 3) "Среди вас есть ровно два рыцаря" ? Для каждой фразы укажите всех, кто мог ее сказать, и объясните. ![]() ![]() ![]() Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что OM = KN. ![]() ![]() ![]()
В трапеции ABCD (
BC
![]() ![]() ![]() Известно, что корни уравнения x² + px + q = 0 – целые числа, а p и q – простые числа. Найдите p и q. ![]() ![]() ![]() На рисунке изображены графики трёх квадратных трёчленов. ![]() ![]() |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 263]
Известно, что корни уравнения x² + px + q = 0 – целые числа, а p и q – простые числа. Найдите p и q.
На рисунке изображены графики трёх квадратных трёчленов.
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Существуют ли числа такие p и q, что уравнения x² + (p – 1)x + q = 0 и x² + (p + 1)x + q = 0 имеют по два различных корня, а уравнение
Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 263] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |