ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?

Вниз   Решение


В городе живут рыцари и лжецы. Рыцари всегда говорят правду, а лжецы всегда лгут. Рыцари носят с собой шпагу, а лжецы– нет. Собрались вместе два рыцаря и два лжеца и посмотрели друг на друга. Кто из них мог сказать фразу: 1) "Cреди нас все рыцари". 2) "Среди вас есть ровно один рыцарь". 3) "Среди вас есть ровно два рыцаря" ? Для каждой фразы укажите всех, кто мог ее сказать, и объясните.

ВверхВниз   Решение


Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

ВверхВниз   Решение


В трапеции ABCD ( BC$ \Vert$AD) известно, что AD = 3 . BC. Прямая пересекает боковые стороны трапеции в точках M и N, AM : MB = 3 : 5, CN : ND = 2 : 7. Найдите отношение площадей четырёхугольников MBCN и AMND.

ВверхВниз   Решение


Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

ВверхВниз   Решение


На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 263]      



Задача 107740

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9

Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

Прислать комментарий     Решение

Задача 109457

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10,11

На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов  ax² + bx + c,  bx² + cx + a  и  cx² + ax + b?

Прислать комментарий     Решение

Задача 109495

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

Прислать комментарий     Решение

Задача 111250

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли числа такие p и q, что уравнения  x² + (p – 1)x + q = 0  и  x² + (p + 1)x + q = 0  имеют по два различных корня, а уравнение
x² + px + q = 0  не имеет корней?

Прислать комментарий     Решение

Задача 111640

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 263]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .