ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

   Решение

Задачи

Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1024]      



Задача 108691

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В равнобедренную трапецию ABCD ( AB=CD ) вписана окружность. Пусть M – точка касания окружности со стороной CD , K – точка пересечения окружности с отрезком AM , L – точка пересечения окружности с отрезком BM . Вычислите величину + .
Прислать комментарий     Решение


Задача 108703

Темы:   [ Гомотетия помогает решить задачу ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

На сторонах AC и BC треугольника ABC отметили точки P и Q соответственно. Оказалось, что AB=AP=BQ=1 , а точка пересечения отрезков AQ и BP лежит на вписанной окружности треугольника ABC . Найдите периметр треугольника ABC .
Прислать комментарий     Решение


Задача 108899

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касающиеся окружности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Две окружности касаются друг друга. В большую из них вписан равносторонний треугольник, из вершин которого проведены касательные к меньшей. Докажите, что длина одной из этих касательных равна сумме длин двух других.
Прислать комментарий     Решение


Задача 109553

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

Прислать комментарий     Решение

Задача 110851

Темы:   [ Ромбы. Признаки и свойства ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Около окружности радиуса 1 описаны ромб и треугольник, две стороны которого параллельны диагоналям ромба, а третья параллельна одной из сторон ромба и равна 5. Найдите сторону ромба.
Прислать комментарий     Решение


Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .