ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC сторона AB меньше стороны AC, D — точка пересечения прямой DB, перпендикулярной к AB, и прямой DC, перпендикулярной к AC. Прямая, проходящая через точку B перпендикулярно к AD, пересекает AC в точке M. Известно, что AM = m, MC = n. Найдите AB. ![]() ![]() а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга. ![]() ![]() ![]() Натуральные числа a1, a2, ..., an таковы, что каждое не превышает своего номера (ak ≤ k) и сумма всех чисел – чётное число. ![]() ![]() ![]() Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное. ![]() ![]() ![]() Для каких α существует функция f : ![]() ![]() |
Страница: 1 2 3 4 >> [Всего задач: 18]
Найдите все функции f(x), определённые при всех действительных x и удовлетворяющие уравнению 2f(x) + f(1 – x) = x².
Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000.
Например,
Страница: 1 2 3 4 >> [Всего задач: 18] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |