ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 98]      



Задача 109997

Темы:   [ Непрерывные функции (общие свойства) ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 10,11

О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой.
Прислать комментарий     Решение


Задача 35573

Тема:   [ Функции одной переменной. Непрерывность ]
Сложность: 4
Классы: 10,11

Пусть f - непрерывная функция, определенная на отрезке [0;1] такая, что f(0)=f(1)=0. Докажите, что на отрезке [0;1] найдутся 2 точки на расстоянии 0,1, в которых функция f(x) принимает равные значения.
Прислать комментарий     Решение


Задача 79595

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 9,10,11

Функция f (x) при каждом значении  x ∈ (− ∞, + ∞)  удовлетворяет равенству  f(x) + (x + ½)f(1 − x) = 1.
  а) Найдите f(0) и f(1).
  б) Найдите все такие функции f(x).

Прислать комментарий     Решение

Задача 98155

Темы:   [ Монотонность, ограниченность ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Прислать комментарий     Решение

Задача 102995

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .