ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 290]      



Задача 55038

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если  A1B1/AB = n.

Прислать комментарий     Решение

Задача 98349

Темы:   [ Теория игр (прочее) ]
[ Построение треугольников по различным элементам ]
[ Правильный (равносторонний) треугольник ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9,10

Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?

Прислать комментарий     Решение

Задача 105147

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9

В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что  ∠ABX = ∠YAC,  ∠AYB = ∠BXCXC = YB.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 108009

Темы:   [ Треугольник (построения) ]
[ Подерный (педальный) треугольник ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ и вписанный угол ]
[ Метод ГМТ ]
[ Подобные треугольники (прочее) ]
[ Теорема синусов ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9

Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 110225

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 7,8,9

Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .