ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все такие пары  (x, y)  целых чисел, что  1 + 2x + 22x+1 = y².

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 266]      



Задача 116582

Темы:   [ Доказательство от противного ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Целые числа a и b таковы, что при любых натуральных m и n число  am² + bn²  является точным квадратом. Докажите, что  ab = 0.

Прислать комментарий     Решение

Задача 61171

Темы:   [ Геометрические интерпретации в алгебре ]
[ Разложение на множители ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4+
Классы: 10,11

Неотрицательные числа x, y, z удовлетворяют неравенствам  5 ≤ x, y, z ≤ 8.
Какое наибольшее и наименьшее значение может принимать величина  S = 2x²y² + 2x²z² + 2y²z² – x4y4z4 ?

Прислать комментарий     Решение

Задача 65714

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие пары различных действительных чисел x и y, что  x100y100 = 299(x – y)  и  x200y200 = 2199(x – y).

Прислать комментарий     Решение

Задача 105168

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4+
Классы: 8,9,10

Дано равенство  (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1),  где a, n, l и все показатели степени – натуральные числа, причём  a > 1.
Найдите все возможные значения числа a.

Прислать комментарий     Решение

Задача 110773

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4+
Классы: 8,9,10,11

Найдите все такие пары  (x, y)  целых чисел, что  1 + 2x + 22x+1 = y².

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .