ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Впишите в данный полукруг правильный треугольник наибольшего периметра.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 73755

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
[ Шахматная раскраска ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

Прислать комментарий     Решение

Задача 73742

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 52489

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Наибольшая или наименьшая длина ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой  AN = BN.  Докажите, что точки A, B, M, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 79487

Темы:   [ Задачи на движение ]
[ Неравенство треугольника (прочее) ]
[ Системы алгебраических неравенств ]
[ Наибольшая или наименьшая длина ]
Сложность: 3+
Классы: 7,8,9

Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?

Прислать комментарий     Решение

Задача 110784

Темы:   [ Экстремальные свойства (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Периметр треугольника ]
[ Наибольшая или наименьшая длина ]
Сложность: 3+
Классы: 7,8,9

Впишите в данный полукруг правильный треугольник наибольшего периметра.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .