Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 33]
|
|
Сложность: 5- Классы: 9,10
|
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км,
царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для
этого он в полдень посылает с поручением гонца, который может передать любое
указание любому жителю, который в свою очередь может передать любое указание
любому другому жителю и т.д. Каждый житель до поступления указания находится в
известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом
направлении (по прямой). Доказать, что царь может организовать оповещение так,
чтобы все жители успели прийти к началу бала.
|
|
Сложность: 5 Классы: 9,10,11
|
Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если: а) r > l/3; б) r > l/4; в) r > l/5; г) r > l/7.
См. задачу 79385 в) и г).
|
|
Сложность: 6- Классы: 9,10,11
|
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами.
В вершине
A квадрата
ABCD находится нора: если в нее, в
отсутствие лисы, попадает хотя бы один заяц, то игра проиграна.
Лиса ловит зайца, как только оказывается с ним в одной точке
(возможно, в точке
A ). Вначале лиса сидит в точке
C , а
зайцы – в точках
B и
D . Лиса бегает повсюду со скоростью не
больше
v , а зайцы – по лучам
AB и
AD со скоростью не
больше 1. При каких значениях
v лиса сможет поймать
обоих зайцев?
Имеется шахматная доска с обычной раскраской (границы квадратов считаются
окрашенными в чёрный цвет).
Начертить на ней окружность наибольшего радиуса, целиком лежащую на чёрном.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 33]