Версия для печати
Убрать все задачи
Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд: 1, 2, 3, ..., 2n. Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Решение
На окружности радиуса 1 отмечена точка
O и из неё циркулем делается
засечка вправо радиусом
l. Из полученной точки
O1 в ту же сторону тем же
радиусом делается вторая засечка, и так делается 1968 раз. После этого
окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?


Решение
Разрежьте какой-нибудь квадрат на квадратики двух разных размеров так,
чтобы маленьких было столько же, сколько и больших.

Решение