ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 [Всего задач: 232]      



Задача 111344

Темы:   [ Раскраски ]
[ Деление с остатком ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Обыкновенные дроби ]
Сложность: 5-
Классы: 9,10,11

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

Прислать комментарий     Решение

Задача 73787

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод координат на плоскости ]
[ Поворот помогает решить задачу ]
[ Рациональные и иррациональные числа ]
[ Приближения чисел ]
[ Тригонометрия (прочее) ]
Сложность: 7
Классы: 9,10,11

а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных n-угольников верно аналогичное утверждение?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 [Всего задач: 232]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .