ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите геометрическое место центров прямоугольников, вписанных в треугольник ABC так, что одна сторона прямоугольника лежит на наибольшей стороне AB , а концы противоположной стороны – на сторонах AC и BC .

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 492]      



Задача 110866

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Перенос помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Дана окружность и её хорда AB . Для всех точек C окружности, отличных от A и B рассматриваются параллелограммы ABCD . Найдите геометрическое место: а) точек D ; б) центров параллелограммов ABCD .
Прислать комментарий     Решение


Задача 111362

Темы:   [ ГМТ - прямая или отрезок ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место центров прямоугольников, вписанных в треугольник ABC так, что одна сторона прямоугольника лежит на наибольшей стороне AB , а концы противоположной стороны – на сторонах AC и BC .
Прислать комментарий     Решение


Задача 115614

Темы:   [ ГМТ - прямая или отрезок ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике сумма расстояний от любой точки внутри четырёхугольника до четырёх прямых, на которых лежат стороны четырёхугольника, постоянна. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Задача 115658

Тема:   [ Биссектриса угла (ГМТ) ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка I — центр вписанной окружности. Точки M и N — середины сторон BC и AC соответственно. Известно, что угол AIN прямой. Докажите, что угол BIM — также прямой.
Прислать комментарий     Решение


Задача 115659

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

Серединные перпендикуляры к сторонам BC и AC остроугольного треугольника ABC пересекают прямые AC и BC в точках M и N . Пусть точка C движется по описанной окружности треугольника ABC , оставаясь в одной полуплоскости относительно AB (при этом точки A и B неподвижны). Докажите, что прямая MN касается фиксированной окружности.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .