ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 492]      



Задача 57138

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

а) Дан параллелограмм ABCD. Докажите, что величина  AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.
б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению  AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.
Прислать комментарий     Решение


Задача 57177

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 76534

Темы:   [ ГМТ - прямая или отрезок ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4+
Классы: 10,11

На сторонах PQ, QR, RP треугольника PQR отложены отрезки AB, CD, EF. Внутри треугольника задана точка S0. Найти геометрическое место точек S, лежащих внутри треугольника PQR, для которых сумма площадей треугольников SAB, SCD, SEF равна сумме площадей треугольников S0AB, S0CD, S0EF. Рассмотреть особый случай, когда

$\displaystyle {\frac{AB}{PQ}}$ = $\displaystyle {\frac{CD}{QR}}$ = $\displaystyle {\frac{EF}{RP}}$.

Прислать комментарий     Решение

Задача 110754

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Параллельный перенос. Построения и геометрические места точек ]
[ Центральная симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4+
Классы: 9,10

Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .
Прислать комментарий     Решение


Задача 54640

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .