ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Две пары подобных треугольников
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана трапеция ABCD с основаниями AD = 3 и BC = 18. Точка M расположена на диагонали AC, причём AM : MC = 1 : 2. Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN. Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 122]
Каждая сторона выпуклого четырёхугольника разделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками (cм. рис.). Докажите, что эти отрезки делят друг друга на три равные части.
Пусть C1, A1, B1 – такие точки на сторонах соответственно AB, BC, CA треугольника ABC, для которых BA1 : A1C = p : 1, CB1 : B1A = q : 1,
На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что BB1 ⊥ CC1. Точка X внутри треугольника такова, что
Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2 : 1, считая от вершины.
Дана трапеция ABCD с основаниями AD = 3 и BC = 18. Точка M расположена на диагонали AC, причём AM : MC = 1 : 2. Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 122] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|