ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 275]      



Задача 111827

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.
Прислать комментарий     Решение


Задача 116306

Темы:   [ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Точки A, B и C лежат на одной прямой. Отрезок AB является диаметром первой окружности, а отрезок BC – диаметром второй окружности. Прямая, проходящая через точку A, пересекает первую окружность в точке D и касается второй окружности в точке E,  BD = 9,  BE = 12.  Найдите радиусы окружностей.

Прислать комментарий     Решение

Задача 116307

Темы:   [ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Точки K, L и M лежат на одной прямой. Отрезок KL является диаметром первой окружности, а отрезок LM – диаметром второй окружности. Прямая, проходящая через точку K, пересекает первую окружность в точке N и касается второй окружности в точке S,  LN = 8,  NS = 4.  Найдите радиусы окружностей.

Прислать комментарий     Решение

Задача 52815

Темы:   [ Ортоцентр и ортотреугольник ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и AA1; O — центр описанной около треугольника ABC окружности. Докажите, что прямые A1B1 и CO перпендикулярны.

Прислать комментарий     Решение


Задача 53141

Темы:   [ Две пары подобных треугольников ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Хорды AB и CD пересекаются в точке E внутри окружности. Пусть M – внутренняя точка отрезка BE. Касательная в точке E к описанной окружности треугольника DEM, пересекает прямые BC и AC в точках F и G соответственно. Пусть   AM/AB = t.  Найдите  BG/EF.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .