Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 501]
|
|
Сложность: 4- Классы: 8,9,10
|
В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число.
Докажите, что сумма длин всех перегородок делится на 4.
Дана окружность и точка A внутри неё.
Найдите геометрическое место вершин C всевозможных прямоугольников ABCD, где точки B и D лежат на окружности.
|
|
Сложность: 4- Классы: 8,9,10
|
Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух?
В треугольнике ABC на сторонах AB и BC выбраны точки E и F так, что AE = EF и ∠CEF = ∠B. Точка K на отрезке EC такова, что EK = FC.
Докажите, что отрезок, соединяющий середины отрезков AF и EC, в два раза короче KF.
Страница:
<< 84 85 86 87
88 89 90 >> [Всего задач: 501]