ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Стороны AB и AC треугольника равны соответственно a и b . На медиане, проведённой к стороне BC взята точка M . Сумма расстояний от этой точки до прямых AB и AC равна c . Найдите эти расстояния.

Вниз   Решение


Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям?

ВверхВниз   Решение


Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

ВверхВниз   Решение


Докажите, что любое простое число, большее 3, можно записать в одном из двух видов:  6n + 1  либо  6n – 1,  где n – натуральное число.

ВверхВниз   Решение


Расстояние между параллельными прямыми равно 24. На одной из них лежит точка C , на другой — точки A и B , причём треугольник ABC — равнобедренный и остроугольный, а его боковая сторона равна 25. Найдите радиус окружности, вписанной в треугольник ABC .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



Задача 116105

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Расстояние между параллельными прямыми равно 24. На одной из них лежит точка C , на другой — точки A и B , причём треугольник ABC — равнобедренный и остроугольный, а его боковая сторона равна 25. Найдите радиус окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 116298

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Стороны AB и AC треугольника равны соответственно a и b . На медиане, проведённой к стороне BC взята точка M . Сумма расстояний от этой точки до прямых AB и AC равна c . Найдите эти расстояния.
Прислать комментарий     Решение


Задача 35015

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри равностороннего треугольника до его сторон не зависит от положения точки.
Прислать комментарий     Решение


Задача 52788

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами a и b и углом между ними $ \alpha$ вписана полуокружность, диаметр которой лежит на третьей стороне. Найдите радиус полуокружности.

Прислать комментарий     Решение


Задача 53792

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами 10, 17 и 21 вписан прямоугольник с периметром 24 так, что одна его сторона лежит на большей стороне треугольника.
Найдите стороны прямоугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .