ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4? ![]() ![]() Существует ли треугольная пирамида, высоты которой равны 1, 2, 3 и 6? ![]() ![]() ![]() Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены). ![]() ![]() ![]() У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если ![]() ![]() ![]() Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный. ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144]
Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный.
На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.
В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.
С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 144] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |