ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 629]      



Задача 116711

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?

Прислать комментарий     Решение

Задача 58167

Темы:   [ Четность и нечетность ]
[ Правильные многоугольники ]
[ Доказательство от противного ]
Сложность: 4
Классы: 7,8

Вершины правильного 2n-угольника A1...A2n разбиты на n пар.
Докажите, что если  n = 4m + 2  или  n = 4m + 3,  то две пары вершин являются концами равных отрезков.

Прислать комментарий     Решение

Задача 78014

Темы:   [ Четность и нечетность ]
[ Функция Мебиуса ]
[ Индукция (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Дано число  H = 2·3·5·7·11·13·17·19·23·29·31·37  (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.

Прислать комментарий     Решение

Задача 78121

Темы:   [ Четность и нечетность ]
[ Квадратный трехчлен (прочее) ]
[ Периодичность и непериодичность ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4
Классы: 10,11

Найти все действительные решения системы  

Прислать комментарий     Решение

Задача 116272

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Индукция (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шень А.Х.

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .