ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 366]      



Задача 111040

Темы:   [ Делимость чисел. Общие свойства ]
[ Квадратные уравнения. Теорема Виета ]
[ Уравнения в целых числах ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные  (a, b),  что a2 делится на натуральное число  2ab2b3 + 1.

Прислать комментарий     Решение

Задача 109818

Темы:   [ НОД и НОК. Взаимная простота ]
[ Количество и сумма делителей числа ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Простые числа и их свойства ]
Сложность: 5
Классы: 8,9,10,11

Натуральные числа x, y, z  (x > 2,  y > 1)  таковы, что  xy + 1 = z².  Обозначим через p количество различных простых делителей числа x, через q – количество различных простых делителей числа y. Докажите, что  p ≥ q + 2.

Прислать комментарий     Решение

Задача 103856

Темы:   [ Перебор случаев ]
[ Четность и нечетность ]
[ Доказательство от противного ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Прислать комментарий     Решение

Задача 107736

Темы:   [ Обыкновенные дроби ]
[ Десятичная система счисления ]
[ Перебор случаев ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  49/98 = 4/8.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Прислать комментарий     Решение

Задача 116546

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .