ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

   Решение

Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 694]      



Задача 109183

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Найти последние четыре цифры числа 51965.

Прислать комментарий     Решение

Задача 109496

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Задача 116589

Темы:   [ Числовые последовательности (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

Прислать комментарий     Решение

Задача 116876

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 10,11

Функция f(x) такова, что для всех значений x выполняется равенство  f(x + 1) = f(x) + 2x + 3.  Известно, что  f(0) = 1.  Найдите f(2012).

Прислать комментарий     Решение

Задача 34892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Последовательности (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд посажены 2000 деревьев - дубы и баобабы. К каждому дереву прибита табличка, на которой указано количество дубов среди следующих деревьев: дерева, на котором висит табличка, и его соседей. Можно ли по числам на табличках определить, какие из деревьев - дубы?
Прислать комментарий     Решение


Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .