ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Вниз   Решение


Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на 17% (курс не округляется).
Может ли курс акций дважды принять одно и то же значение?

ВверхВниз   Решение


Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 [Всего задач: 51]      



Задача 116688

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9,10

Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .