ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равностороннем треугольнике ABC провели высоту AH. В треугольнике ABH отметили точку I пересечения биссектрис. В треугольниках ABI, BCI и CAI тоже отметили точки пересечения биссектрис – L, K и J соответственно. Найдите угол KJL. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 290]
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки A, B, C (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что MT || BC и NT || AB. Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.
В равностороннем треугольнике ABC провели высоту AH. В треугольнике ABH отметили точку I пересечения биссектрис. В треугольниках ABI, BCI и CAI тоже отметили точки пересечения биссектрис – L, K и J соответственно. Найдите угол KJL.
Два одинаковых правильных треугольника ABC и CDE со стороной 1 расположены так, что имеют только одну общую точку C и угол BCD меньше, чем 60o. Точка K — середина AC, точка L — середина CE, точка M — середина BD. Площадь треугольника KLM равна . Найдите BD.
+ + = 3.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 290] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|