ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 266]      



Задача 116642

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Прислать комментарий     Решение

Задача 116736

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Является ли простым число  2011·2111 + 2500?

Прислать комментарий     Решение

Задача 116869

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10

Квадратный трёхчлен  ax² + 2bx + c  имеет два различных корня, а квадратный трёхчлен  a²x² + 2b²x + c²  корней не имеет.
Докажите, что у первого трёхчлена корни разного знака.

Прислать комментарий     Решение

Задача 116882

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На какую наибольшую степень двойки делится число  1020 – 220?

Прислать комментарий     Решение

Задача 116935

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .