ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

n рыцарей из двух враждующих стран сидят за круглым столом. Число пар соседей-друзей равно числу пар соседей-врагов.
Доказать, что n делится на 4.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 629]      



Задача 30935

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 6,7,8

Может ли кузнечик за 25 прыжков вернуться в начальную позицию, если он прыгает:
  a) по прямой в любую сторону на нечётное расстояние;
  б) по плоскости на расстояние 1 в любом из четырёх основных направлений (вверх, вниз, вправо, влево);
  в) по плоскости ходом коня (то есть по диагонали прямоугольника 1×2);
  г) по диагонали прямоугольника a×b (a и b фиксированы).

Прислать комментарий     Решение


Задача 30952

Тема:   [ Четность и нечетность ]
Сложность: 4-
Классы: 6,7,8

n рыцарей из двух враждующих стран сидят за круглым столом. Число пар соседей-друзей равно числу пар соседей-врагов.
Доказать, что n делится на 4.

Прислать комментарий     Решение

Задача 58164

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8

Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.

Прислать комментарий     Решение

Задача 58165

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 4-
Классы: 7,8

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.

Прислать комментарий     Решение

Задача 60726

 [Гармонические числа]
Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Докажите, что числа  Hn = 1 + 1/2 + 1/3 + ... + 1/n  при  n > 1  не будут целыми.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .