ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если  a² + b²  делится на 7, то и ab делится на 7.

   Решение

Задачи

Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 5981]      



Задача 30925

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 6,7

x, y > 0.  Через S обозначим наименьшее из чисел x, 1/y,  y + 1/x.  Какое максимальное значение может принимать величина S?

Прислать комментарий     Решение

Задача 30946

Темы:   [ Четность и нечетность ]
[ Раскраски ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 3
Классы: 6,7,8

Доска 9×9 раскрашена в девять цветов, причём раскраска симметрична относительно главной диагонали.
Доказать, что на этой диагонали все клетки раскрашены в разные цвета.

Прислать комментарий     Решение

Задача 31238

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что если  a² + b²  делится на 7, то и ab делится на 7.

Прислать комментарий     Решение

Задача 31240

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  4343 + 1717  делится на 10.

Прислать комментарий     Решение

Задача 31263

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  3n + 1  не делится на 10100.

Прислать комментарий     Решение

Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 5981]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .