ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 2440]      



Задача 32803

Темы:   [ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

Прислать комментарий     Решение

Задача 32887

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

На занятии кружка 10 школьников решали 10 задач. Все школьники решили разное количество задач; каждую задачу решило одинаковое количество школьников. Один из этих десяти школьников, Боря, решил задачи с первой по пятую и не решил задачи с шестой по девятую. Решил ли он десятую задачу?

Прислать комментарий     Решение

Задача 33138

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8

На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

Прислать комментарий     Решение

Задача 34836

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Решите в натуральных числах уравнение  3x + 4y = 5z.

Прислать комментарий     Решение

Задача 34846

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

В последовательности троек целых чисел  (2, 3, 5),  (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.

Прислать комментарий     Решение

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .