ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В последовательности троек целых чисел (2, 3, 5), (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д. ![]() |
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 2440]
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
На занятии кружка 10 школьников решали 10 задач. Все школьники решили разное количество задач; каждую задачу решило одинаковое количество школьников. Один из этих десяти школьников, Боря, решил задачи с первой по пятую и не решил задачи с шестой по девятую. Решил ли он десятую задачу?
На доске написаны числа
Решите в натуральных числах уравнение 3x + 4y = 5z.
В последовательности троек целых чисел (2, 3, 5), (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |