ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 172]      



Задача 78117

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4+
Классы: 9

Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

Прислать комментарий     Решение

Задача 57414

Темы:   [ Неравенства с медианами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 5
Классы: 8,9,10

Докажите, что  | a2 - b2|/(2c) < mc $ \leq$ (a2 + b2)/(2c).
Прислать комментарий     Решение


Задача 98486

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9

В круговом шахматном турнире каждый участник играет с каждым из остальных один раз. За выигрыш присуждается одно очко, за ничью – пол-очка, за проигрыш – ноль. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше проигравшего.
  а) Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
  б) Докажите, что в пункте а) число ¾ нельзя заменить на меньшее.

Прислать комментарий     Решение

Задача 105094

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
  а) более 75% от общего количества партий в турнире;
  б) более 70%?

Прислать комментарий     Решение

Задача 34894

Темы:   [ Правильные многоугольники ]
[ Вычисления. Метрические соотношения в многоугольниках ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .