ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа a, b, c и d удовлетворяют равенству  ab = cd.  Докажите, что число  a2000 + b2000 + c2000 + d2000  составное.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 266]      



Задача 34997

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9,10

Натуральные числа a, b, c и d удовлетворяют равенству  ab = cd.  Докажите, что число  a2000 + b2000 + c2000 + d2000  составное.

Прислать комментарий     Решение

Задача 56881

Темы:   [ Тригонометрические уравнения ]
[ Разложение на множители ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Пусть  x = sin 18°.  Докажите, что  4x² + 2x = 1.

Прислать комментарий     Решение

Задача 61142

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Найдите остаток от деления многочлена  P(x) = x6n + x5n + x4n + x3n + x2n + xn + 1  на  Q(x) = x6 + x5 + x4 + x3 + x2 + x + 1,  если известно, что n кратно 7.

Прислать комментарий     Решение

Задача 64627

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

Прислать комментарий     Решение

Задача 65407

Темы:   [ Соображения непрерывности ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Известно, что среди членов некоторой арифметической прогрессии a1, a2, a3, a4, ... есть числа  
Докажите,что эта прогрессия состоит из целых чисел.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .