ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 191]      



Задача 109635

Темы:   [ Арифметическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10

Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Прислать комментарий     Решение

Задача 110182

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?

Прислать комментарий     Решение

Задача 35228

Темы:   [ Арифметическая прогрессия ]
[ Куб ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.

Прислать комментарий     Решение

Задача 35451

Темы:   [ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Простые числа и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 9,10,11

15 простых натуральных чисел образуют возрастающую арифметическую прогрессию. Докажите, что разность этой прогрессии больше 30000.

Прислать комментарий     Решение

Задача 77888

Темы:   [ Геометрическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 9

Имеется 4n положительных чисел, таких, что из любых четырёх попарно различных можно составить геометрическую прогрессию. Доказать, что среди этих чисел найдется n одинаковых.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 191]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .