ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 12601]      



Задача 115458

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке O . Описанные окружности треугольников AOB и COD пересекаются в точке М на основании AD . Докажите, что треугольник BMC равнобедренный.
Прислать комментарий     Решение


Задача 32007

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3-
Классы: 7,8,9

Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?

Прислать комментарий     Решение

Задача 35387

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3-
Классы: 7,8,9

Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать.
Прислать комментарий     Решение


Задача 35413

Тема:   [ Пересекающиеся окружности ]
Сложность: 3-
Классы: 8,9,10

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

Прислать комментарий     Решение

Задача 35545

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 8,9

Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Прислать комментарий     Решение

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .