ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли некоторое сечение куба быть правильным пятиугольником?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 348]      



Задача 104119

Темы:   [ Куб ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3-
Классы: 7,8,9

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прислать комментарий     Решение


Задача 103886

Темы:   [ Куб ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8

На гранях кубика расставлены числа от 1 до 6. Кубик бросили два раза. В первый раз сумма чисел на четырёх боковых гранях оказалась равна 12, во второй — 15. Какое число написано на грани, противоположной той, где написана цифра 3?

Прислать комментарий     Решение


Задача 35505

Темы:   [ Куб ]
[ Пятиугольники ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Может ли некоторое сечение куба быть правильным пятиугольником?

Прислать комментарий     Решение

Задача 86918

Темы:   [ Куб ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Основание правильной треугольной пирамиды расположено в грани куба, одна из сторон основания совпадает с ребром куба, а вершина пирамиды лежит в противоположной грани куба. Найдите угол боковой грани пирамиды с плоскостью её основания.
Прислать комментарий     Решение


Задача 86922

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Правильный тетраэдр ]
Сложность: 3
Классы: 8,9

Все грани параллелепипеда – равные ромбы со стороной a и острым углом 60o . Найдите высоту параллелепипеда.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .