ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат ABCD. Найдите геометрическое место точек M таких, что ∠AMB = ∠CMD.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 492]      



Задача 55099

Темы:   [ ГМТ - прямая или отрезок ]
[ Геометрические Места Точек ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Найдите геометрическое место точек P, для которых:

а) треугольники APB и ABC равновелики;

б) треугольники APB и APC равновелики;

в) треугольники APB, APC и BPC равновелики.

Прислать комментарий     Решение


Задача 55514

Темы:   [ Угол между касательной и хордой ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4
Классы: 8,9

Две окружности касаются друг друга внешним образом в точке D. Прямая касается одной из этих окружностей в точке A и пересекает другую в точках B и C. Докажите, что точка A равноудалена от прямых BD и CD.

Прислать комментарий     Решение


Задача 34995

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 7,8,9

Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.

Прислать комментарий     Решение

Задача 36997

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Дан квадрат ABCD. Найдите геометрическое место точек M таких, что ∠AMB = ∠CMD.

Прислать комментарий     Решение

Задача 52340

 [Теорема Коперника.]
Темы:   [ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9,10

По неподвижной окружности, касаясь её изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности?

Прислать комментарий     Решение


Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .