ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 54]
Во вписанном четырёхугольнике ABCD диагональ AC перпендикулярна диагонали BD и делит её пополам. Найдите углы четырёхугольника, если BAD = .
Для каждой точки C полуокружности с диаметром AB (C отлична от A и B) на сторонах AC и BC треугольника ABC построены вне треугольника квадраты. Найдите геометрическое место середин отрезков, соединяющих их центры.
Bнутри окружности зафиксирована точка P. C — произвольная точка окружности, AB – хорда, проходящая через точку P и перпендикулярная отрезку PC. Tочки X и Y являются проекциями точки P на прямые AC и BC. Докажите, что все отрезки XY касаются одной и той же окружности.
Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
Страница: << 5 6 7 8 9 10 11 [Всего задач: 54] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|