ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высота, опущенная из вершины прямого угла на гипотенузу, делит треугольник на два треугольника, в каждый из которых вписана окружность. Найдите углы и площадь треугольника, образованного катетами исходного треугольника и прямой, проходящей через центры этих окружностей, если высота исходного треугольника равна h.

   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1024]      



Задача 52745

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Высота, опущенная из вершины прямого угла на гипотенузу, делит треугольник на два треугольника, в каждый из которых вписана окружность. Найдите углы и площадь треугольника, образованного катетами исходного треугольника и прямой, проходящей через центры этих окружностей, если высота исходного треугольника равна h.

Прислать комментарий     Решение


Задача 53095

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

В ромбе ABCD угол BAD — острый. Окружность, вписанная в этот ромб, касается сторон AB и CD в точках M и N соответственно и пересекает отрезок CM в точке P, а отрезок BN — в точке Q. Найдите отношение BQ к QN, если CP : PM = 9 : 16.

Прислать комментарий     Решение


Задача 53148

Темы:   [ Касающиеся окружности ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8,9

Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга.

Прислать комментарий     Решение


Задача 55592

Темы:   [ Окружность, вписанная в угол ]
[ Окружности (построения) ]
Сложность: 4+
Классы: 8,9

Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

Прислать комментарий     Решение


Задача 54889

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4+
Классы: 8,9

Две окружности радиусов r и R с центрами в точках O1 и O внешне касаются в точке K. В точке A окружности радиуса R проведена касательная, пересекающая окружность радиуса r в точках B и C. Известно, что BC : AB = p и отрезок AC пересекает отрезок O1K. Определите:

а) при каких условиях на r, R и p возможна такая геометрическая конфигурация;

б) длину отрезка BC.

Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .