Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1024]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.
В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и
A1 соответственно. Пусть K – точка на окружности,
диаметрально противоположная точке C1, D – точка
пересечения прямых B1C1 и A1K. Докажите, что CD = CB1.
|
|
Сложность: 4+ Классы: 9,10
|
Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что AQ ⊥ OP. Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что OM = ON.
|
|
Сложность: 4+ Классы: 9,10
|
Две окружности
O1 и
O2 пересекаются в точках
M и
P. Обозначим через
MA хорду окружности
O1, касающуюся окружности
O2 в точке
M, а через
MB — хорду окружности
O2, касающуюся окружности
O1 в точке
M. На
прямой
MP отложен отрезок
PH =
MP. Доказать, что четырёхугольник
MAHB можно
вписать в окружность.
С помощью циркуля и линейки проведите через данную точку
прямую, отсекающую от данного угла треугольник заданного
периметра.
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1024]