ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание AC равнобедренного треугольника ABC является хордой окружности. Эта окружность касается прямых AB и BC в точках A и C соответственно. Известно, что $ \angle$ABC = 120o, AC = a. Найдите площадь той части треугольника, которая лежит в круге, ограниченном данной окружностью.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 32093

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 5,6,7,8

В круге отметили точку. Разрежьте круг на  а) три;  б) две части так, чтобы из них можно было составить новый круг, у которого отмеченная точка будет в центре.

Прислать комментарий     Решение

Задача 54419

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

В круговом секторе OAB , центральный угол которого равен 45o , расположен прямоугольник KMPT . Сторона KM прямоугольника лежит на радиусе OA , вершина P — на дуге AB , вершина T — на радиусе OB . Сторона KT на 3 больше стороны KM . Площадь прямоугольника KMPT равна 18. Найдите радиус.
Прислать комментарий     Решение


Задача 115568

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

Радиус окружности с центром O равен 2 . В сектор AOB с углом 45o , вписан прямоугольник KLMN . Сторона KL расположена на отрезке OA , вершина M — на дуге AB , а вершина N — на отрезке OB . Найдите стороны прямоугольника, если одна из них вдвое больше другой. радиус.
Прислать комментарий     Решение


Задача 52639

Темы:   [ Касающиеся окружности ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

Центральный угол сектора равен 60o, а радиус равен R. Найдите радиус окружности, вписанной в этот сектор.

Прислать комментарий     Решение


Задача 52937

Темы:   [ Площадь круга, сектора и сегмента ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

Основание AC равнобедренного треугольника ABC является хордой окружности. Эта окружность касается прямых AB и BC в точках A и C соответственно. Известно, что $ \angle$ABC = 120o, AC = a. Найдите площадь той части треугольника, которая лежит в круге, ограниченном данной окружностью.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .