ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдите наибольшее значение функции y = 2x2-12x+8ln x-8 на отрезке [;] .

Вниз   Решение


В прямоугольнике ABCD точка M – середина стороны BC, N – середина стороны CD, P –; точка пересечения отрезков DM и BN.
Докажите, что угол  ∠MAN = ∠BPM.

Вверх   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1026]      



Задача 102711

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3
Классы: 8,9

Дана точка M(- 1;3). Найдите координаты точки, симметричной точке M относительно а) оси Ox; б) оси Oy; в) начала координат; г) точки K(3;1); д) биссектрисы I и III координатных углов; е) биссектрисы II и IV координатных углов.

Прислать комментарий     Решение


Задача 32076

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9,10

a, b, c, d – стороны четырёхугольника (в любом порядке), S – его площадь. Докажите, что  S ≤ ½ (ab + cd).

Прислать комментарий     Решение

Задача 35782

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Центральная симметрия помогает решить задачу ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 8,9,10

На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.

Прислать комментарий     Решение

Задача 53078

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, величина угла A равна α  (α < 45°),  точка D – середина гипотенузы. Точка C1 симметрична точке C относительно прямой BD. Найдите угол AC1B.

Прислать комментарий     Решение


Задача 53558

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны BC, N – середина стороны CD, P –; точка пересечения отрезков DM и BN.
Докажите, что угол  ∠MAN = ∠BPM.

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .