ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали трапеции с основаниями AD и BC пересекаются в точке O.
Докажите, что окружности, описанные около треугольников AOD и BOC касаются друг друга.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 275]      



Задача 53579

Темы:   [ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Диагонали трапеции с основаниями AD и BC пересекаются в точке O.
Докажите, что окружности, описанные около треугольников AOD и BOC касаются друг друга.

Прислать комментарий     Решение

Задача 102399

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

Прислать комментарий     Решение

Задача 102400

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность пересекает одну сторону острого угла AOB в точках C и A (C лежит между O и A) и касается другой стороны угла в точке B. На дуге AB, не содержащей точки C, взята точка D. Расстояния от точки D до прямых AC, OB и AB равны a, b и c соответственно. Найдите расстояние от точки D до прямой BC.

Прислать комментарий     Решение

Задача 102447

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  AE : EC,  если  AB = 5  и  BC = 9.
  б) Сравните площади треугольников ABC и ABF.

Прислать комментарий     Решение

Задача 111071

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Вписанная в треугольник ABC окружность касается его сторон в точках K, N и M. Известно, что в треугольнике KNM угол M равен 75°, произведение всех сторон равно  9 + 6 ,   а вершина K делит отрезок AC пополам. Найдите стороны треугольника ABC.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .