ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Hа доске была нарисована система координат и отмечены точки A(1, 2) и B(3, 1). Cистему координат стерли. ![]() ![]() Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны. ![]() ![]() ![]() Через центр параллелограмма ABCD проведены две прямые. Одна из них пересекает стороны AB и CD соответственно в точках M и K, вторая – стороны BC и AD соответственно в точках N и L. Докажите, что четырёхугольник MNKL – параллеллограмм. ![]() ![]() |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 158]
б) Докажите, что композиция параллельного переноса и центральной симметрии (в обоих порядках) является центральной симметрией.
На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.
Через центр параллелограмма ABCD проведены две прямые. Одна из них пересекает стороны AB и CD соответственно в точках M и K, вторая – стороны BC и AD соответственно в точках N и L. Докажите, что четырёхугольник MNKL – параллеллограмм.
Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |