ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите сумму отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по разные стороны от общей хорды AB.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 492]      



Задача 54131

Темы:   [ ГМТ и вписанный угол ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите сумму отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по разные стороны от общей хорды AB.

Прислать комментарий     Решение


Задача 54524

Темы:   [ Метод ГМТ ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте точку так, чтобы касательные, проведённые из неё к двум данным окружностям, были равны данным отрезкам.

Прислать комментарий     Решение


Задача 54525

Темы:   [ Метод ГМТ ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте точку, из которой две данные окружности были бы видны под данными углами.

Прислать комментарий     Решение


Задача 54540

Темы:   [ Метод ГМТ ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.

Прислать комментарий     Решение


Задача 54549

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Гомотетичные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин всех хорд, проходящих через данную точку окружности.

Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .