Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 166]
|
|
Сложность: 3 Классы: 10,11
|
Даны шар и плоскость. На поверхности шара можно делать построения циркулем, а на плоскости – циркулем и линейкой.
Как на плоскости построить отрезок, равный радиусу шара?
В выпуклом четырёхугольнике MNLQ углы при вершинах N и L – прямые, а tg∠QMN = 2/3.
Найдите диагональ NQ, если известно, что сторона LQ вдвое меньше стороны MN и на 2 больше стороны LN.
|
|
Сложность: 3 Классы: 7,8,9
|
Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники.
M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.
Дана трапеция ABCD с основаниями AD = 3 и BC = 18. Точка M расположена на диагонали AC, причём AM : MC = 1 : 2. Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 166]