ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 372]      



Задача 54385

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой,  AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.

Прислать комментарий     Решение

Задача 54582

Темы:   [ ГМТ - прямая или отрезок ]
[ Ромбы. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

Прислать комментарий     Решение

Задача 58238

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Трапеции (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 64390

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

Прислать комментарий     Решение

Задача 64721

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 9,10,11

Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что  ∠ABM = ∠MQP.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .