ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Центр окружности, вписанной в прямоугольный треугольник, удалён от вершин острых углов на расстояния a и b. Найдите гипотенузу. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109]
Центр окружности, вписанной в прямоугольный треугольник, удалён от вершин острых углов на расстояния a и b. Найдите гипотенузу.
В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.
В треугольнике ABC биссектрисы BP и CT пересекаются в точке O. Известно, что точки A, P, O и T лежат на одной окружности. Найдите угол A.
Стороны треугольника равны 1 и 2, а угол между ними равен 60o. Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите её радиус.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|