ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Из вершин произвольного выпуклого четырёхугольника опущены перпендикуляры на его диагонали.
Докажите, что четырёхугольник, вершинами которого являются основания этих перпендикуляров, подобен исходному.

Вниз   Решение


ABC — разносторонний остроугольный треугольник. Сколько на плоскости существует таких точек D, для которых множество {A, B, C, D} имеет ось симметрии?

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1026]      



Задача 55613

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
Сложность: 4
Классы: 8,9

Найдите среди всех треугольников с данным основанием и данной площадью треугольник наименьшего периметра.

Прислать комментарий     Решение


Задача 55618

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 8,9

ABC — разносторонний остроугольный треугольник. Сколько на плоскости существует таких точек D, для которых множество {A, B, C, D} имеет ось симметрии?

Прислать комментарий     Решение


Задача 34883

Темы:   [ Параллельный перенос ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9,10,11

а) 2000 фишек расположены на плоскости в вершинах выпуклого 2000-угольника. За один ход можно разбить их на две группы и фишки первой группы сдвинуть на какой-нибудь вектор, а остальные фишки оставить на месте. Может ли случиться, что после 9 ходов все фишки окажутся на одной прямой? б) А после 10 ходов?
Прислать комментарий     Решение


Задача 34995

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 7,8,9

Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54642

Темы:   [ Симметрия помогает решить задачу ]
[ Построение треугольников по различным точкам ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

На плоскости заданы две пересекающиеся прямые, и на них отмечено по одной точке (D и E). Постройте треугольник ABC, у которого биссектрисы CD и AE лежат на данных прямых, а основания этих биссектрис— данные точки D и E.

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .