ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Равные окружности S1 и S2 касаются внутренним образом окружности S в точках A1 и A2. Пусть C — некоторая точка окружности S, прямые A1C и A2C пересекают окружности S1 и S2 в точках B1 и B2 соответственно. Докажите, что B1B2 || A1A2.
![]() |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 222]
В остроугольном треугольнике ABC на высоте BH выбрана произвольная точка P. Точки A' и C' – середины сторон BC и AB соответственно. Перпендикуляр, опущенный из A' на CP, пересекается с перпендикуляром, опущенным из C' на AP, в точке K. Докажите, что точка K равноудалена от точек A и C.
Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причём одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S. Верно ли обратное?
Равные окружности S1 и S2 касаются внутренним образом окружности S в точках A1 и A2. Пусть C — некоторая точка окружности S, прямые A1C и A2C пересекают окружности S1 и S2 в точках B1 и B2 соответственно. Докажите, что B1B2 || A1A2.
Внутри треугольника расположены окружности
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 222] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |