ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан вписанный 2n-угольник с углами $ \beta_{1}^{}$, $ \beta_{2}^{}$, ..., $ \beta_{2n}^{}$. Докажите, что

$\displaystyle \beta_{1}^{}$ + $\displaystyle \beta_{3}^{}$ +...+ $\displaystyle \beta_{2n-1}^{}$ = $\displaystyle \beta_{2}^{}$ + $\displaystyle \beta_{4}^{}$ +...+ $\displaystyle \beta_{2n}^{}$.

Верно ли обратное?

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 563]      



Задача 66931

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 4+
Классы: 9,10,11

В четырехугольнике $ABCD$ $AB\perp CD$ и $AD\perp BC$. Докажите, что существует точка, расстояния от которой до прямых, содержащих стороны четырехугольника, пропорциональны этим сторонам.
Прислать комментарий     Решение


Задача 78573

Темы:   [ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Малые шевеления ]
Сложность: 4+
Классы: 8,9,10

Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом 45o к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.
Прислать комментарий     Решение


Задача 55655

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

Дан вписанный 2n-угольник с углами $ \beta_{1}^{}$, $ \beta_{2}^{}$, ..., $ \beta_{2n}^{}$. Докажите, что

$\displaystyle \beta_{1}^{}$ + $\displaystyle \beta_{3}^{}$ +...+ $\displaystyle \beta_{2n-1}^{}$ = $\displaystyle \beta_{2}^{}$ + $\displaystyle \beta_{4}^{}$ +...+ $\displaystyle \beta_{2n}^{}$.

Верно ли обратное?

Прислать комментарий     Решение


Задача 55593

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5-
Классы: 8,9

Даны прямая l и точки A и B по одну сторону от нее. Пусть A1 и B1 — проекции этих точек на прямую l. С помощью циркуля и линейки постройте на прямой l такую точку M, чтобы угол AMA1 был вдвое меньше угла BMB1.

Прислать комментарий     Решение


Задача 55656

Темы:   [ Композиции симметрий ]
[ Произвольные многоугольники ]
Сложность: 5-
Классы: 8,9

На плоскости даны прямые l1, l2, ..., l2n, пересекающиеся в одной точке. Блоха сидит в некоторой точке M плоскости и прыгает через прямую l1, попадая в точку M1, причём M и M1 симметричны относительно прямой l1, далее — через прямую l2 и т.д. Докажите, что если через 2n прыжков блоха оказалась в точке М, то, начиная движение из любой точки плоскости, через 2n прыжков блоха окажется на прежнем месте.

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .