ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
![]() |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1026]
Внутри острого угла XOY взяты точки M и N, причём ∠XON = ∠YOM. На луче OX отмечена точка Q так, что ∠NQO = ∠MQX, а на луче OY – точка P так, что ∠NPO = ∠MPY. Докажите, что длины ломаных MPN и MQN равны.
Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC.
В треугольнике ABC угол A равен 60°. На лучах BA и CA отложены отрезки BX и CY, равные стороне BC.
На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.
С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1026] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |