ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены биссектрисы AA1 и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 492]      



Задача 55766

Темы:   [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?

Прислать комментарий     Решение


Задача 55778

Темы:   [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Вершины K и N треугольника KMN перемещаются по сторонам соответственно AB и AC угла BAC, а стороны треугольника KMN соответственно параллельны трём данным прямым. Найдите геометрическое место вершин M.

Прислать комментарий     Решение


Задача 56468

Темы:   [ Биссектриса угла (ГМТ) ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 57147

Темы:   [ ГМТ и вписанный угол ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.
Прислать комментарий     Решение


Задача 57150

Темы:   [ ГМТ и вписанный угол ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На плоскости даны четыре точки. Найдите множество центров прямоугольников, образуемых четырьмя прямыми, проходящими соответственно через данные точки.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .